Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари



Что такое Строгость? Значение и толкование слова strogost, определение термина


Строгость -  - комплексная характеристика рассуждения, учи­тывающая степень ясности и точности используемых в нем тер­минов, достоверность исходных принципов, логическую обосно­ванность переходов от посылок к следствиям. Еще с античности С. считалась отличительной чертой математического рассуждения. Логическая необходимость математических доказательств и точ­ность вычислений позволяют рассматривать математику как об­разец формальной С. для других наук. Иногда считают, что имен­но С. рассуждения гарантирует абсолютную надежность результа­тов математики. Как показывает история науки, понятие С. развивалось посте­пенно. В ходе общего прогресса науки обычно оказываются пре­взойденными каноны С., представлявшиеся ранее абсолютно бе­зупречными. Так обстояло, в частности, дело с геометрией Евклида. Долгое время она являлась идеалом С., но в XIX в. Н. М. Лобачев­ский писал о ней: «...Никакая Математическая наука не должна бы начинаться с таких темных понятий, с каких, повторяя Евк­лида, начинаем мы Геометрию, и... нигде в Математике нельзя терпеть такого недостатка С., какой принуждены были допустить в теории параллельных линий».   С. обеспечивается выводами из достоверных принципов, но вме­сте с тем сами общие принципы начинают восприниматься как достоверные, когда дают возможность сделать строгими прежде не­строгие рассуждения. На разных этапах развития научной теории требование С. может быть более или менее актуальным. За поисками строгих доказательств уже известных истин обычно скрывается недостаток их понимания и стремление выявить все те неявные условия, с которыми связано их принятие. С., как прави­ло, не является самоцелью. Введение С. может быть консервативным, опирающимся на об­щепринятые посылки, но может быть также революционным, вво­дящим посылки, казавшиеся ранее неприемлемыми. Так, выдви­нутое Г. Лейбницем требование строгой и внимательной проверки каждого шага в цепи доводов вместе с его идеей рассуждения как вычисления по однозначно определенным правилам означало ре­волюцию в логике. С., в том числе и в математике, не является сама по себе объективным критерием истинности и ценности новых открытий и теорий.
Строгость

 - комплексная характеристика рассуждения, учи­тывающая степень ясности и точности используемых в нем тер­минов, достоверность исходных принципов, логическую обосно­ванность переходов от посылок к следствиям. Еще с античности С. считалась отличительной чертой математического рассуждения. Логическая необходимость математических доказательств и точ­ность вычислений позволяют рассматривать математику как об­разец формальной С. для других наук. Иногда считают, что имен­но С. рассуждения гарантирует абсолютную надежность результа­тов математики. Как показывает история науки, понятие С. развивалось посте­пенно. В ходе общего прогресса науки обычно оказываются пре­взойденными каноны С., представлявшиеся ранее абсолютно бе­зупречными. Так обстояло, в частности, дело с геометрией Евклида. Долгое время она являлась идеалом С., но в XIX в. Н. М. Лобачев­ский писал о ней: «...Никакая Математическая наука не должна бы начинаться с таких темных понятий, с каких, повторяя Евк­лида, начинаем мы Геометрию, и... нигде в Математике нельзя терпеть такого недостатка С., какой принуждены были допустить в теории параллельных линий».   С. обеспечивается выводами из достоверных принципов, но вме­сте с тем сами общие принципы начинают восприниматься как достоверные, когда дают возможность сделать строгими прежде не­строгие рассуждения. На разных этапах развития научной теории требование С. может быть более или менее актуальным. За поисками строгих доказательств уже известных истин обычно скрывается недостаток их понимания и стремление выявить все те неявные условия, с которыми связано их принятие. С., как прави­ло, не является самоцелью. Введение С. может быть консервативным, опирающимся на об­щепринятые посылки, но может быть также революционным, вво­дящим посылки, казавшиеся ранее неприемлемыми. Так, выдви­нутое Г. Лейбницем требование строгой и внимательной проверки каждого шага в цепи доводов вместе с его идеей рассуждения как вычисления по однозначно определенным правилам означало ре­волюцию в логике. С., в том числе и в математике, не является сама по себе объективным критерием истинности и ценности новых открытий и теорий.

Возможно Вам будет интересно узнать лексическое, прямое или переносное значение этих слов:

Сорит - (от греч. soros куча)   цепь сокращенных ...
Софизм -  — рассуждение, кажущееся правильным, но содержа­щее скрытую логическую ...
Спор -   столкновение мнений или позиций, в ходе которого ...
Сравнительные Модальности - см.: Абсолютные и сравни­тельные модальности. ...
Строгая Импликация - см.: Импликация, Парадоксы импли­кации, Логика. ...
Суждение -  — мысль, выражаемая повествовательным предло­жением и являющаяся истинной ...
Суппозиция - (от лат. suppositio — подкладывание, подмена)  — термин, ...
Существенный Признак - см.: Определение понятия. ...
Сходство -  — наличие хотя бы одного общего признака у ...
Таблица Истинности -   таблица, с помощью которой уста­навливается истинностное значение ...


Ссылка для сайта или блога:
Ссылка для форума (bb-код):
Код нашей кнопки: