Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари



Главная Словарь логики Слова на букву И Интенсионал И Экстенсионал

Что такое Интенсионал И Экстенсионал? Значение и толкование слова intensional i ekstensional, определение термина


Интенсионал И Экстенсионал -  - понятия, введенные ав­стрийским логиком и философом Р. Карнапом для анализа зна - чения языковых выражений. Метод И. и Э. представляет собой модификацию и дальнейшую разработку семантической концеп­ции немецкого математика и логика Г. Фреге. Но если для Фреге исходным и основным было понятие имени, то Карнап скорее ориентировался на роль прилагательных - он анализировал пре­дикаты. Утверждение «Сократ — человек» можно трактовать двоя­ко. Можно считать, что это утверждение приписывает Сократу некоторое свойство «быть человеком». В то же время данное утвер­ждение можно рассматривать как говорящее о том, что индивиду­ум Сократ включается в класс людей. Этот пример показывает, что предикат, в данном случае «человек», может обозначать как свойство, так и класс. Классы и свойства взаимосвязаны: каждое свойство задает некоторый класс и каждому классу соответствует некоторое свойство. Объекты, обладающие свойством «быть чело­веком», образуют класс людей; с другой стороны, класс людей характеризуется тем, что входящие в него элементы обладают свой­ством «быть человеком». Класс, задаваемый некоторым свойством, может быть и пустым. Большую роль в концепции Карнапа играет понятие эквива­лентности. Два класса эквивалентны, если они состоят из одних и тех же элементов. Два предиката эквивалентны, если они обозна­чают один и тот же класс. Класс, обозначаемый предикатным вы­ражением, называется Э. этого выражения. И. предикатного выра­жения Карнап называет выражаемое им свойство. Напр., Э. предиката «человек» является класс людей; его И. будет свойство «быть человеком». Предикаты «человек» и «существо, имеющее мягкую мочку уха» будут экстенсионально эквивалентны, т. к. обо­значают один и тот же класс. Предикаты «человек» и «существо, способное производить орудия труда» не только экстенсионально, но и интенсионально эквивалентны, т. к. обозначают один и тот же класс и выражают одно и то же свойство. Поскольку два предложения являются эквивалентными в том случае, когда имеют одинаковое истинностное значение, постоль­ку Э. предложения целесообразно считать его истинностное значе­ние. И. предложения является выражаемое им суждение, мысль. Э. собственного имени Карнап считал предмет, обозначаемый этим именем; И. имени является концепт - индивидуальное понятие. Понятия Э. и И. лежат в основе различения экстенсиональ­ных и интенсиональных контекстов. Экстенсиональ­ными контекстами называют множества утверждений, в которых взаимозаменимы экстенсионально эквивалентные языковые вы­ражения, т. е. которые учитывают лишь Э. выражений. Интенсио-   нальный контекст допускает замену только интенсионально эк­вивалентных выражений, т. е. для него важны И. выражений (см.: Имя, Смысл, Значение).
Интенсионал И Экстенсионал

 - понятия, введенные ав­стрийским логиком и философом Р. Карнапом для анализа зна - чения языковых выражений. Метод И. и Э. представляет собой модификацию и дальнейшую разработку семантической концеп­ции немецкого математика и логика Г. Фреге. Но если для Фреге исходным и основным было понятие имени, то Карнап скорее ориентировался на роль прилагательных - он анализировал пре­дикаты. Утверждение «Сократ — человек» можно трактовать двоя­ко. Можно считать, что это утверждение приписывает Сократу некоторое свойство «быть человеком». В то же время данное утвер­ждение можно рассматривать как говорящее о том, что индивиду­ум Сократ включается в класс людей. Этот пример показывает, что предикат, в данном случае «человек», может обозначать как свойство, так и класс. Классы и свойства взаимосвязаны: каждое свойство задает некоторый класс и каждому классу соответствует некоторое свойство. Объекты, обладающие свойством «быть чело­веком», образуют класс людей; с другой стороны, класс людей характеризуется тем, что входящие в него элементы обладают свой­ством «быть человеком». Класс, задаваемый некоторым свойством, может быть и пустым. Большую роль в концепции Карнапа играет понятие эквива­лентности. Два класса эквивалентны, если они состоят из одних и тех же элементов. Два предиката эквивалентны, если они обозна­чают один и тот же класс. Класс, обозначаемый предикатным вы­ражением, называется Э. этого выражения. И. предикатного выра­жения Карнап называет выражаемое им свойство. Напр., Э. предиката «человек» является класс людей; его И. будет свойство «быть человеком». Предикаты «человек» и «существо, имеющее мягкую мочку уха» будут экстенсионально эквивалентны, т. к. обо­значают один и тот же класс. Предикаты «человек» и «существо, способное производить орудия труда» не только экстенсионально, но и интенсионально эквивалентны, т. к. обозначают один и тот же класс и выражают одно и то же свойство. Поскольку два предложения являются эквивалентными в том случае, когда имеют одинаковое истинностное значение, постоль­ку Э. предложения целесообразно считать его истинностное значе­ние. И. предложения является выражаемое им суждение, мысль. Э. собственного имени Карнап считал предмет, обозначаемый этим именем; И. имени является концепт - индивидуальное понятие. Понятия Э. и И. лежат в основе различения экстенсиональ­ных и интенсиональных контекстов. Экстенсиональ­ными контекстами называют множества утверждений, в которых взаимозаменимы экстенсионально эквивалентные языковые вы­ражения, т. е. которые учитывают лишь Э. выражений. Интенсио-   нальный контекст допускает замену только интенсионально эк­вивалентных выражений, т. е. для него важны И. выражений (см.: Имя, Смысл, Значение).

Возможно Вам будет интересно узнать лексическое, прямое или переносное значение этих слов:

Индукция - (от лат. inductio наведение)   умозаключение, в ...
Индукция Математическая, Полная Математическая Индукция -   средство доказательства общих положений в матема­тике и ...
Индукция Неполная -   индуктивный вывод о том, что всем представителям ...
Индукция Полная -   индукция, в которой делается заключе­ние о том, ...
Индукция Популярная -   наиболее распространенный вид индуктивного вывода, в котором ...
Интерпретация - (от лат. interpretatio разъяснение, истолко­вание)   в ...
Интерсубъективный - (от лат. inter между)   межлично­стный, общий, ...
Интуитивная Логика -   интуитивные представления о пра­вильности рассуждений, сложившиеся стихийно ...
Интуиционизм -   направление в обосновании математики и логики, согласно ...
Интуиционистская Логика -   одна из наиболее важных ветвей логики неклассической, ...


Ссылка для сайта или блога:
Ссылка для форума (bb-код):
Код нашей кнопки: